valore grazie alla rarità - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

valore grazie alla rarità - перевод на Английский

RELATIVISTIC WAVE EQUATION DESCRIBING THE PROPAGATION OF A FREE SPIN 1½ PARTICLE
Rarita-Schwinger action; Rarita-Schwinger spinor; Rarita-Schwinger Equation; Rarita-Schwinger field; Rarita-Schwinger equation; Rarita–Schwinger field; Rarita–Schwinger spinor

valore grazie alla rarità      
n. scarcity value
alla prima         
PAINTING TECHNIQUE
Wet-in-wet; Alla prima; Alla Prima; Wet in wet; Ala prima; Wet-on-wet painting
alla prima, metodo di pittura ad olio (art)
La Scala         
  • [[Daniel Barenboim]] (at the Musikverein, Vienna, 2008)
  • The Teatro alla Scala in Milan, by night
  • Interior of the opera house in 1900
  • The exterior of La Scala in 2005 after the 2002/04 renovations
  • 250px
  • The theatre's restored interior
  • A nineteenth-century depiction of the Teatro alla Scala
OPERA HOUSE IN MILAN, ITALY
La Scala, theatre; Teatro alla Scala; Teatro alla Scala di Milano; Teatro Alla Scala; Ballet of La Scala; Orchestra della Scala; La Scala, Milan; Scala de Milan; New Royal Theatre at La Scala; New Royal-Ducal Theatre at La Scala; New Royal Ducal Theatre at La Scala; La Scala Theatre Orchestra; La Scala Theatre Chorus; Royal-Ducal Theatre at La Scala; La scala; Filarmonica della Scala
n. La Scala, glorioso teatro di opere a Milano

Определение

puttanesca
[p?t?'n?sk?]
¦ adjective denoting a pasta sauce of tomatoes, garlic, olives, anchovies, etc.
Origin
Ital., from puttana 'prostitute' (the sauce is said to have been devised by prostitutes as one which could be cooked quickly between clients' visits).

Википедия

Rarita–Schwinger equation

In theoretical physics, the Rarita–Schwinger equation is the relativistic field equation of spin-3/2 fermions. It is similar to the Dirac equation for spin-1/2 fermions. This equation was first introduced by William Rarita and Julian Schwinger in 1941.

In modern notation it can be written as:

( ϵ μ κ ρ ν γ 5 γ κ ρ i m σ μ ν ) ψ ν = 0 {\displaystyle \left(\epsilon ^{\mu \kappa \rho \nu }\gamma _{5}\gamma _{\kappa }\partial _{\rho }-im\sigma ^{\mu \nu }\right)\psi _{\nu }=0}

where ϵ μ κ ρ ν {\displaystyle \epsilon ^{\mu \kappa \rho \nu }} is the Levi-Civita symbol, γ 5 {\displaystyle \gamma _{5}} and γ ν {\displaystyle \gamma _{\nu }} are Dirac matrices, m {\displaystyle m} is the mass, σ μ ν i 2 [ γ μ , γ ν ] {\displaystyle \sigma ^{\mu \nu }\equiv {\frac {i}{2}}[\gamma ^{\mu },\gamma ^{\nu }]} , and ψ ν {\displaystyle \psi _{\nu }} is a vector-valued spinor with additional components compared to the four component spinor in the Dirac equation. It corresponds to the (1/2, 1/2) ⊗ ((1/2, 0) ⊕ (0, 1/2)) representation of the Lorentz group, or rather, its (1, 1/2) ⊕ (1/2, 1) part.


This field equation can be derived as the Euler–Lagrange equation corresponding to the Rarita–Schwinger Lagrangian:

L = 1 2 ψ ¯ μ ( ϵ μ κ ρ ν γ 5 γ κ ρ i m σ μ ν ) ψ ν {\displaystyle {\mathcal {L}}=-{\tfrac {1}{2}}\;{\bar {\psi }}_{\mu }\left(\epsilon ^{\mu \kappa \rho \nu }\gamma _{5}\gamma _{\kappa }\partial _{\rho }-im\sigma ^{\mu \nu }\right)\psi _{\nu }}

where the bar above ψ μ {\displaystyle \psi _{\mu }} denotes the Dirac adjoint.

This equation controls the propagation of the wave function of composite objects such as the delta baryons (
Δ
) or for the conjectural gravitino. So far, no elementary particle with spin 3/2 has been found experimentally.

The massless Rarita–Schwinger equation has a fermionic gauge symmetry: is invariant under the gauge transformation ψ μ ψ μ + μ ϵ {\displaystyle \psi _{\mu }\rightarrow \psi _{\mu }+\partial _{\mu }\epsilon } , where ϵ ϵ α {\displaystyle \epsilon \equiv \epsilon _{\alpha }} is an arbitrary spinor field. This is simply the local supersymmetry of supergravity, and the field must be a gravitino.

"Weyl" and "Majorana" versions of the Rarita–Schwinger equation also exist.